
 Definitions

� PyTorch is one of the most popular deep learning frameworks, with a syntax similar to NumPy�

� In the context of PyTorch, you can think of a Tensor as a NumPy array that can be run on a CPU or a GPU, and has a
method for automatic differentiation (needed for backpropagation)�

� TorchText, TorchVision, and TorchAudio are Python packages that provide PyTorch with functionality for text, image,
and audio data respectively�

� A neural network consists of neurons that are arranged into layers. Input values are passed to the first layer of neural
networks. Each neuron has two properties: a weight and a bias. The output of a neuron in a neural network is a
weighted sum of its inputs, plus the bias. The output is passed on to any connected neurons in the next layer, and this
continues until the final layer of the network is reached�

� An activation function is a transformation of the output from a neuron, and is used to introduce non-linearity into the
calculations�

� Backpropagation is an algorithm used to train neural networks by iteratively adjusting the weights and biases of each
neuron�

� Saturation is when the output from a neuron reaches a maximum or minimum value beyond which it cannot change.
This can reduce learning performance, and an activation function such as ReLU may be needed to avoid the
phenomenon�

� The loss function quantifies the difference between the predicted output of a model and the actual target output�

� The optimizer is an algorithm to adjust the parameters (neuron weights and biases) of a neural network during the
training process in order to minimize the loss function�

� The learning rate controls the step size of the optimizer. If the learning rate is too low the optimization will take too
long. If it is too high, the optimizer will not effectively minimize the loss function leading to poor predictions�

� Momentum controls the inertia of the optimizer. If momentum is too low, the optimizer can get stuck at a local
minimum and give the wrong answer. If it is too high, the optimizer can fail to converge and not give an answer�

� Transfer learning is reusing a model trained on one task for a second similar task to accelerate the training process�

� Fine-tuning is a type of transfer learning where early layers are frozen, and only the layers close to the output are
trained�

� Accuracy is a metric to determine how well a model fits a dataset. It quantifies the proportion of correctly predicted
outcomes (either classifications or predictions) compared to the total number of data points in the dataset.

Importing PyTorch

Import the top-level package for core functionality

Import neural network functionality

Import functional programming tools

Import optimization functionality

Import dataset functions

Import evaluation metrics

import

from import

import as

import as

from import

import

 torch

 torch nn

 torch.nn.functional F

 torch.optim optim

 torch.utils.data TensorDataset, DataLoader

 torchmetrics

Working with tensors

Create tensor from list with tensor()

1 3 6 10

Get data type of tensor elements with .dtype

Returns torch.int64

Get dimensions of tensor with .Size()

Returns torch.Size([4]

Get memory location of tensor with .device

Returns cpu or gpu

Create a tensor of zeros with zeros()

2 3

Create a random tensor with rand()

3 4 # Tensor has 3 rows, 4 columns

tnsr = torch.tensor([, , ,])

tnsr.dtype

tnsr.shape)

tnsr.device

tnsr_zrs = torch.zeros(,)

tnsr_rndm = torch.rand(size=(,))

Datasets and dataloaders

Create a dataset from a pandas DataFrame with TensorDataset()

Load the data in batches with DataLoader()

X = df[feature_columns].values

y = df[target_column].values

dataset = TensorDataset(torch.tensor(X). (), torch.tensor(y). ())

dataloader = DataLoader(dataset, batch_size=n, shuffle=True)

float float

Preprocessing

One-hot encode categorical variables with one_hot()

0 1 2 3) # Returns tensor of 0s and 1sF.one_hot(torch.tensor([, ,]), num_classes=

Sequential model architecture

Create a linear layer with m inputs, n outputs with Linear()

Get weight of layer with .weight

Get bias of layer with .bias

Create a sigmoid activation layer for binary classification with Sigmoid()

Create a softmax activation layer for multi-class classification with Softmax()

Create a rectified linear unit activation layer to avoid saturation with ReLU()

Create a leaky rectified linear unit activation layer to avoid saturation with LeakyReLU()

0.05

Create a dropout layer to regularize and prevent overfitting with Dropout()

0.5

Create a sequential model from layers

Input size must match output from previous layer

Activation layer comes last

lnr = nn.Linear(m, n)

lnr.weight

lnr.bias

nn.Sigmoid()

nn.Softmax(dim=-1)

nn.ReLU()

nn.LeakyReLU(negative_slope=)

nn.Dropout(p=)

model = nn.Sequential(

 nn.Linear(n_features, i),

 nn.Linear(i, j),
 nn.Linear(j, n_classes),

 nn.Softmax(dim=-1)
)

Fitting a model and calculating loss

Fit a model to input data with model where model is a variable created by, e.g., Sequential()

Get target values

Calculate the mean-squared error loss for regression with MSELoss()

 # Returns tensor(x)

Calculate the L1 loss for robust regression with SmoothL1Loss()

 # Returns tensor(x)

Calculate binary cross-entropy loss for binary classification with BCELoss()

 # Returns tensor(x)

Calculate cross-entropy loss for multi-class classification with CrossEntropyLoss()

 # Returns tensor(x)

Calculate the gradients via backprogagation with .backward()

prediction = model(input_data).double()

actual = torch.tensor(target_values).double()

mse_loss = nn.MSELoss()(prediction, actual)

l1_loss = nn.SmoothL1Loss()(prediction, actual)

bce_loss = nn.BCELoss()(prediction, actual)

ce_loss = nn.CrossEntropyLoss()(prediction, actual)

loss.backward()

Working with optimizers

Create a stochastic gradient descent optimizer with SGD(), setting learning rate and momentum

0.01 0.95

Update neuron parameters with .step()

optimizer = optim.SGD(model.parameters(), lr= , momentum=)

optimizer.step()

The training loop

Set model to training mode

Set a loss criterion and an optimizer

0.01 0.95
Loop over chunks of data in the training set

 # Set the gradients to zero with .zero_grad()

 # Get features and targets for current chunk of data

 # Run a "forward pass" to fit the model to the data

 # Calculate loss

 # Calculate gradients using backprogagation

 # Update the model parameters

model.train()

loss_criterion = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr= , momentum=)

 data dataloader:

 optimizer.zero_grad()

features, targets = data

 predictions = model(data)

 loss = loss_criterion(predictions, targets)

 loss.backward()

 optimizer.step()

for in

The evaluation loop

Set model to evaluation mode

Create accuracy metric with Accuracy()

"multiclass" 3

Loop of chunks of data in the validation set

 (0)

 # Get features and targets for current chunk of data

 # Run a "forward pass" to fit the model to the data

 # Calculate accuracy over the batch

Calculate accuracy over all the validation data

Reset the metric for the next dataset (training or validation)

model. ()

metric = torchmetrics.Accuracy(task= , num_classes=)

i, data in dataloader, :

features, targets = data

predictions = model(data)

 accuracy = metric(output, predictions.argmax(dim=-1))

accuracy = metric.compute()

(f"Accuracy on data: {accuracy}")

metric.reset()

eval

for enumerate

print all

Transfer learning and fine-tuning

Save a layer of a model to a file with save()

'layer.pth'

Load a layer of a model from a file with load()

'layer.pth'

Freeze the weight for layer 0 with .requires_grad

in
"0.weight"

torch.save(layer,)

new_layer = torch.load()

 name, param model.named_parameters():

 name == :

 param.requires_grad = False

for
if

Cheat sheet

Deep Learning with PyTorch

Learn PyTorch online at www.DataCamp.com

Learn Python Online at
www.DataCamp.com

